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1. INTRODUCTION

Linear theory of micropolar elasticity developed by Eringen [l] is basically an
extension of classical theory of elasticity. In classical theory of elasticity, the
motion is characterized by translational degrees of freedom only, while in
micropolar elasticity it is characterized by translational and rotational degrees of
freedom. Physically, micropolar elastic solids can be thought of as being
composed of dumbbell type molecules and these molecules in a volume element
can undergo rotation about their center of mass along with the linear
displacement and consequently, loads across a surface element are transmitted
not only by a force stress vector but also by a coupled stress vector.
In the problems of waves and vibrations in a micropolar elastic medium, the

effect of microstructure is found to be signi®cant particularly in the case of high
frequency waves. Many problems of re¯ection and refraction of micropolar
elastic waves at an interface have been studied by several researchers. Notable
among them are Par®tt and Eringen [2], Tomar et al. [3±7], Singh and Kumar
[8, 9] among others.
This paper includes the study of two problems: (I) Re¯ection and refraction of

longitudinal waves propagating through the liquid medium and impinging upon
an interface between homogeneous, inviscid liquid half-space and a uniform
micropolar elastic solid half-space. (II) Waves at the interface of liquid/
micropolar elastic half-spaces. The problem of re¯ection and refraction of
longitudinal waves incident from the liquid at an interface between liquid and
uniform elastic solid half-spaces has been reduced as a special case of our
problem by simply making the elastic constants corresponding to micropolarity
equal to zero.
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2. FIELD EQUATIONS AND CONSTITUTIVE RELATIONS

Following Eringen [10], the micropolar elastodynamic equations in the
absence of body forces and body couples are given by,

�c21 � c23�r�r � u� ÿ �c22 � c23�r6�r6u� � c23r6fff � �u;

�c24 � c25�r�r �fff� ÿ c24r6�r6fff� � o2
0r6uÿ 2o2

0fff � �fff;
�1�

where

c21 � �l� 2m�=r, c22 � m=r, c23 � K=r,

c24 � g=rj, c25 � �a� b�=rj, o2
0 � c23=j:

u(x, t) and fff(x, t) are displacement and rotation vectors respectively. l, m, K, a,
b, g are elastic moduli, r is density, and j is micro-inertia of the medium. The
superposed dots on the right hand side of equations (1) denote the double time
derivative.
The constitutive relations in micropolar medium are (cf. reference [10])

tkl � lur, rdkl � m�uk, l � ul, k� � K�ul, k ÿ eklrfr�,
mkl � afr, rdkl � bfk, l � gfl, k,

�2�

where symbols have their usual meanings.
Introducing the scalar and vector potentials q, x and U, FFF through

Helmholtz's theorem as follows:

u � rq�r6U, r �U � 0, fff � rx�r6FFF, r �FFF � 0, �3�
and following the calculations given by Singh [11], one arrives at

�r2 � k21�q � 0, �r2 � k22�x � 0, �4�

�r2 � k23��U,FFF� � 0, �r2 � k24��U,FFF� � 0, �5�
where

k1 � o
Vi

, �i � 1, 2, 3, 4�, V 2
1 � c21 � c23,

V 2
2 � �c24 � c25��1ÿ 2o2

0=o
2�ÿ1,

�6�

V 2
3, 4 �

1

2a
�b2�b2 ÿ 4ac�1=2�,

a � 1ÿ 2o2
0=o

2, b � c22 � c23 � c24 ÿ �2c22 � c23�o2
0=o

2,

c � c24�c22 � c23�:

�7�

Note from equations (4) and (5) that scalar potentials q and x and vector
potentials U and FFF satisfy Helmholtz equations. Par®tt and Eringen [2] have
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shown that V1 is the velocity of propagation of the longitudinal wave, V2 that of
a longitudinal microrotational wave and V3 , V4 are the velocities of two sets of
coupled transverse and microrotational waves. The set of coupled waves
travelling with velocity V3 propagates only if o2> 2o2

0; otherwise they
degenerate into distance decaying sinusoidal vibrations.
The equation of motion in terms of displacement potential for homogeneous,

inviscid liquid is given by (cf reference [12]):

r2f 0 � 1

a 02
@2f 0

@t2
,

where a 0 �(l 0/r 0 )1/2 is the velocity of dilatational wave in liquid. l 0 and r 0 are
bulk modulus and density of the liquid, respectively. The displacement and
pressure are given by

u0i �
@f 0

@x0i
, p� � r 0

@2f 0

@t2
: �8�

3. REFLECTION AND REFRACTION OF LONGITUDINAL WAVE (I)

Consider a two-dimensional problem in the y±z plane with the z-axis pointing
downward into the micropolar solid half-space and a plane interface z� 0
between a homogeneous, inviscid liquid half-space and a uniform micropolar
elastic solid half-space. Take

u � �0, u2, u3�, FFF � �f1, 0, 0�: �9�

Consider a longitudinal wave propagating through the liquid medium
M1[z< 0] and striking at the interface z� 0 making an angle y0 with the
interface. The following re¯ected and refracted waves are assumed at the
interface: (a) a re¯ected longitudinal wave in the medium M1 travelling with
speed a 0 and making an angle y1 with the interface; (b) a refracted longitudinal
wave in the medium M2 travelling with speed V1 and making an angle y2 with
the interface; (c) two sets of refracted coupled wave in medium M2 travelling
with speeds V3 and V4 making an angle y3 and y4 with the interface, respectively.
The complete geometry of the problem is shown in Figure 1.
Assume the following form of potentials in the half-spaces:
In liquid half-space M1:

f 0 � A0 exp�ik0�cos y0y� sin y0z� ÿ io00t�
� A1 exp�ik0�cos y1yÿ sin y1z� ÿ io00t�,

�10�

where A0 , A1 are amplitudes of the incident and re¯ected longitudinal waves,
respectively. o00 (� k0a 0) is the circular frequency of the wave in liquid.
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In micropolar elastic solid half-space M2:

q � A2 exp�ik1�cos y2y� sin y2z� ÿ io1t�,

Up � Î�Apx� exp�ikp�cos ypy� sin ypz� ÿ iopt�,

FFFp � �BpyĴ� BpzK̂� exp�ikp�cos ypy� sin ypz� ÿ iopt�,

�11�

where p� 3, 4. A2 , A3x and A4x are the amplitudes of the refracted longitudinal

wave, refracted coupled wave at an angle y3 , and refracted coupled wave at an

angle y4 , respectively. Î, Ĵ, K̂ are unit cartesian base vectors. op (� kpVp) is the

frequency of the respective wave.

Par®tt and Eringen [2] have shown that the coef®cients Ap and Bp are

connected to each other through the relation

Bp � ÿ io2
0Apx

kp�V2
p ÿ 2o2

0k
ÿ2
p ÿ c24�

" #
�sin ypĴÿ cos ypK̂�: �12�
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Figure 1. Geometry of the problem.
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4. BOUNDARY CONDITIONS

The boundary conditions at the liquid±solid interface are the continuity
of displacement and stresses. Note that the shear stress and couple stress
must vanish at the interface, since inviscid liquid cannot support these.
Mathematically, these boundary conditions can be expressed as: at z� 0,

tzz � p�, 0 � tzy � mmx, u3 � u 03: �13�
The requisite components of displacement and stresses for both the mediums M1

and M2 in terms of potentials can be obtained from equations (2), (3), (8) and
(9) as follows:

u3 � @q
@z
ÿ @Ux

@y
, �14a�

u 03 �
@f0

@z
, p� � r0

@2f0

@t2
, �14b�

tzz � lr2q� �2m� K� @2q

@z2
ÿ @

2Ux

@y @z

� �
,

tzy � �2m� K� @
2q

@y @z
� �m� K� @

2Ux

@z2
ÿ m

@2Ux

@y2
� K

@Fz

@y
ÿ @Fy

@z

� �
,

mzx � g
@2Fz

@y @z
ÿ @

2Fy

@z2

� �
:

�15�

Using equations (10) and (11) in equations (14) and (15) and the Snell's law
given by

cos y0
a0
� cos y1

a0
� cos y2

V1
� cos y3

V3
� cos y4

V4
, �16�

in the above boundary conditions (13) and the assumptions that at the interface
z� 0

o 00 � o1 � o3 � o4 � o, �17�
these boundary conditions reduce to a system of four equations in ®ve unknown
as follows:

ÿ l0k20�A0 � A1� � �l� �2m� K� sin2 y2�k21A2

ÿ �2m� K�k23 cos y3 sin y3A3x ÿ �2m� K�k24 cos y4 sin y4A4x � 0,

�2m� K�k21 cos y2 sin y2A2 � k23 ÿm cos 2y3 � K sin2 y3 � K

R1

� �
A3x

� k24 ÿm cos 2y4 � K sin2 y4 � K

R2

� �
A4x � 0,

�18�
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k33R2 sin y3A3x � k34R1 sin y4A4x � 0, �19a�
k0 sin y0�A0 ÿ A1� ÿ k1 sin y2A2 � k3 cos y3A3x � k4 cos y4A4x � 0: �19b�

Equations (18) and (19) can be written in matrix form as

AX � B,

A �

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

a41 a42 a43 a44

26664
37775, B �

ÿ1
0

0

sin y0

26664
37775,

X � �x1 x2 x3 x4�T:

�20�

The non-vanishing elements of matrix [A] in non-dimensional form can be

written as

a11 � 1, a12 � ÿ l
l0

a0

V1

� �2

�K

l0
DD2

1

" #
,

a13 � DD3
K

l0
cos y0, a14 � DD4

K

l0
cos y0,

a23 � ÿ cos2 y0 � 1

D

a0

V3

� �2 m
K
� 1� 1

R1

� �
,

a24 � ÿ cos2 y0 � 1

D

a0

V4

� �2 m
K
� 1� 1

R2

� �
,

a33 � D3, a34 � D4
R1

R2

a0

V4

� �2 a0

V3

� �ÿ2
, a22 � D1 cos y0,

a41 � sin y0, a42 � D1, a43 � a44 � ÿ cos y0,

�21�

where

D2
i �

a0

Vi

� �2

ÿ cos2 y0, i � 1, 3, 4

R1 � o2

o2
0

ÿ 2ÿ c24k
2
3

o2
0

, R2 � o2

o2
0

ÿ 2ÿ c24k
2
4

o2
0

,

D � 2
m
K
� 1:

The elements of matrix [X ] are as follows:
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x1 � A1

A0
, x2 � A2

A0
, x3 � A3x

A0
, x4 � A4x

A0
:

x1 to x4 represent the amplitude ratios of re¯ected longitudinal wave, refracted
longitudinal wave, refracted coupled wave at an angle y3 and refracted coupled
wave at an angle y4 , respectively.

5. SPECIAL CASE

If the elastic constants corresponding to micropolarity of the half-space M2

vanish, the problem should reduce to that of re¯ection and refraction of the
longitudinal wave at the liquid±solid interface. This is veri®ed as follows: When
K� a� b� g� 0, the velocities of various waves given in equations (6) and (7)
with the help of relations given just below equation (1) in the half-space M2

reduce to

V1 � c1, V3 � c2, V2 � V4 � 0,

and the Snell's law becomes

cos y0
a 0
� cos y1

a 0
� cos y2

c1
� cos y3

c2
:

With these considerations, note that the boundary condition (19a) yields A4x� 0,
i.e., the coupled wave at an angle y4 does not exist, as was expected beforehand.
Replacing a 0, c2 , k0 , k1, k3 , A1/A0 , A2/A0 and A3x/A0 by c, b1, k, K1, k1, V, W
and P, respectively, and also changing y0 , y2 and y3 by 90ÿ y, 90ÿ y1 and
90ÿ g1, respectively, in the remaining boundary conditions (18) and (19b), one
can easily obtain the equations (4.19), (4.20), (4.22) of reference [13] (pp. 30±31)
for the relevant problem. Consequently, on solving these reduced boundary
conditions, one can obtain the same re¯ection and refraction coef®cients as given
in reference [13] (pp. 31).

6. WAVES AT THE LIQUID/SOLID INTERFACE (II)

Here, the solutions in the half-spaces M1 and M2 are considered such that the
radiation condition is satis®ed. The appropriate form of the solution in liquid
medium M1 [z< 0] is:

f0 � B0 exp�ik�zx0 � yÿ ct��
where

x0 �
c2

a02
ÿ 1

� �1=2
: �22�

B0 is the arbitrary constant and k is the wave number. And in the micropolar
medium M2 [z> 0] the solutions are,
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u2 � G exp�ifk�yÿ ct� ÿ V 01zg�,
u3 � S exp�ifk�yÿ ct� ÿ V 001zg�,
f1 � Q exp�ifk�yÿ ct� ÿ V 0001 zg�,

�23�

where

V 01 � k
rc2

l� 2m� K
ÿ 1

� �1=2
, V 001 � k 1ÿ K

m

� �
rc2

m
ÿ 1

� �1=2
,

V 0001 � k2
rc2J
g
ÿ 1

� �
ÿ 2K

g

� �1=2
,

�24�

and G, S and Q are arbitrary constants.
The propagation of surface waves along the interface is possible if the

quantities under the square root in the expressions (22) and (24) are positive.
Substituting the values from equations (22) and (23) in the boundary conditions
given by equation (13) and making use of equations (14b) and (2), one obtains
the following period equation for waves along the interface between liquid/
micropolar elastic solid half-spaces, which is analogous to the Stoneley wave,�������������

x2 ÿ 1
p

�a1a2
������������������
a3x2 ÿ 1

p ������������������
a4x2 ÿ 1

p
ÿ 1� � a1a5x

2
������������������
a3x2 ÿ 1

p
� 0, �25�

where

x � c

a0
, a1 � 1� K

m
, a2 � 1� 2m

l
� K

l
,

a3 � a02

c21 � c23
, a4 � 1ÿ K

m

� �
a02

c22
, a5 � l0

l
:

�26�

Clearly period equation (25) is independent of wave number. Hence, surface
waves along the liquid±solid interface are non-dispersive.

7. NUMERICAL RESULTS AND DISCUSSION

In order to study these problems numerically, the following values of relevant
elastic parameters have been taken: for micropolar elastic solid:

l � 7�59 GPa, m � 1�89 GPa, c1 � 2�28 mm=ms,

K � 0�0149 GPa, g � 2�93 kN, c2 � 0�929 mm=ms,

r � 2�192 g=cm3, j � 0�196 mm2, c3 � 0�0825 mm=ms,

c4 � 2�48 mm=ms, o2=o2
0 � 10:

�27�

for liquid half-space:

a0 � 1�48 mm=ms, r0 � 1�01 g=cm3, �28�
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Equation (20) is solved for amplitude ratios. It is found that various amplitude
ratios depend on the angle of emergence and frequency of the incident
longitudinal wave, and the nature of dependence of these amplitude ratios is
different for different values of angle of emergence and frequency.
Note from Figure 2 that for the re¯ected longitudinal wave, the modulus of

amplitude ratio x1 has a value of one at zero degree angle of incidence. This
value increases monotonically with an increase in the value y0 , and attains its
maximum value equal to 1�3616 at y0� 17�. Beyond y0� 17�, it decreases
monotonically achieving its minimum value equal to 0�0254 at y0� 43�.
Thereafter, there exist local maxima and minima in the range 44�< y0< 49� and
50�< y0< 58�. Finally, beyond y0� 58�, it increases gently with an increase in y0
and approaches the value 0�4450 as y0 approaches 90�.
For a refracted longitudinal wave, the modulus of amplitude ratio x2 has a

value of zero at zero degree angle of incidence. It increases monotonically with
increase in y0 and attains its maximum value 1�1635 at y0� 49�. Beyond y0� 49�,
it decreases monotonically and attains its minimum value 0�7849 at y0� 61� and
then increases slowly towards the value 0�8190 as y0 approaches 90�.
For the refracted coupled wave at angle y3 , the modulus of amplitude ratio x3

has a value of zero at zero degree angle of incidence. It increases monotonically,
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attaining a value equal to 0�00142 at y0� 39�. Thereafter, it decreases to a value
approaching zero at y0� 49�. Then, there is a sharp increase in the value and it
reaches 0�00591 at nearly 57�. Further it decreases rapidly and ®nally approaches
the value zero as y0 approaches 90�. The graph of x3 has been shown to be 103

times the original value.
For the refracted coupled wave at an angle y4 , the modulus of amplitude ratio

x4 has value zero at zero degree angle of incidence. It increases monotonically as
it increases beyond y0� 0�, and attains its maximum value equal to 0�3837 at
y0� 32�. Thereafter, its value decreases and then increases slowly and again
decreases gently approaching zero as y0 approaches 90�.
Figure 3 shows the variation of various amplitude ratios with frequency ratio

(o2/o2
0). It can be observed from this ®gure that the values of all amplitude

ratios decreases very slowly to a small extent except x4 , which is constant for all
values of frequency ratio. Coupled waves in micropolar medium are excited only
if o2/o2

0> 2.
Finally, the value of c/a 0 has been calculated from the period equation (25)

and is found to be equal to 1�576848, This clari®es that the propagation of
surface waves along the interface (which is analogous to the Stoneley wave)
between the two half spaces is possible.
In conclusion, a mathematical study of re¯ection/refraction coef®cients of

incident longitudinal wave at a plane interface between M1 and M2 is made. It is

1.0

0.2

0.4

0.6

0.8

0.0
2.382.10 2.66 2.94 3.22 3.50

Frequency ratios (   2/   2)

A
m

p
li

tu
d

e 
ra

ti
o

s 
|x

i|

x4

x1

x2

x3   103

0

Figure 3. Variation of amplitude ratios with frequency ratio (o2/o2
0) (when y0� 45�).



868 LETTERS TO THE EDITOR

found that at y0� 0�, i.e., grazing incidence, the modulus of x1� 1. In this case,
refracted waves are not excited. On the other hand, at y0� 90� i.e., normal
incidence, coupled waves in the solid medium are not excited. Both re¯ection
and refraction occur together for 0�5 y05 90�, having ups and downs in their
values. It is also important to note that the refraction of the coupled wave at an
angle y3 is negligibly small compared to other waves.
In the majority of practical cases, the velocity of sound a 0 in the liquid is less

than the velocity of longitudinal wave V1. It may also be less than the velocities
V3 and V4 . One can consider the case, V35V45 a 05V1. From equation (16)

cos y2 � V1

a 0
cos y0, cos y1 � Vi

a 0
cos y0, �i � 3, 4�:

Hence, it is clear that for cos y0> a 0/V1, the angle y2 will be complex. However,
the angles y3 , y4 will be real for all y0 . Thus, the longitudinal wave in the
micropolar solid medium will be an inhomogeneous wave, ``gliding'' along the
boundary, while the other waves will be ordinary plane waves. Other cases can
be discussed in a similar manner as given in reference [13] for the liquid±solid
boundary.
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